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Appendix A. Appendix for Section 2

Appendix A.1. Oligopolistic competition
The demand system, expressed in logarithms, facing an oligopolist i in period t is of

the form

qit = Qi (pit, zt) (A.1)

where qit and pit denote the log output quantity and the log output price of firm i in
period t, respectively, and zt denotes the log industry expenditure function in period t
that depends on the prices (p1t, . . . , pJt) of all N active firms operating in the industry in
period t. Oligopolistic firms internalize the fact that they are nonatomistic in their industry
and can influence industry expenditure zt through their decisions. The key assumption
underlying the demand system (A.1) is that the industry expenditure function zt serves
as a sufficient statistic for the prices of all competitors p−it := {pkt}k 6=i of firm i, given
firm i’s own price pit.

The demand system (A.1) includes the popularized log-linear nested CES demand
system of Atkeson and Burnstein (2008)

Qi (pit, zt) = (ρ− η) zt − ρpit

where η ≥ 1 denotes the constant elasticity of substitution of goods across industries and
ρ > η denotes the constant elasticity of substitution of goods within an industry. We
do not restrict our subsequent analysis to this particular parametric functional form and
instead work with the general demand system in equation (A.1).

Shephard’s lemma (an envelope condition) identifies the partial change in zt with
respect to pit as

∂zt
∂pit

= Sit

where firm i’s market share of the total industry revenues is

Sit := PitQit
J∑
k=1

PktQkt

The own-price ηit and cross-price δik,t elasticities of demand are defined as

ηit := −dqit
dpit

= −
[
∂qit
∂pit

+ ∂qit
∂zt

Sit

]
,

δik,t := dqit
dpkt

= ∂qit
∂zt

Skt,∀k 6= i
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Totally differentiating the demand system (A.1) and the accounting identity for revenue
rit = pit + qit, and invoking Shephard’s lemma, yields an expression for the elasticity of
revenue rit with respect to output qit

drit
dqit

=

1 +

∂qit
∂pit

+ ∂qit
∂zt

Sit +
∑
k 6=i

Skt
dpkt
dpit

−1


We emphasize that the elasticity drit/dqit is different under the Bertrand and Cournot
models of oligopolistic competition. The reason is that the firm’s conjectural elasticities,
dpkt/dpit,∀k 6= i, differ between these two models of oligopoly. A useful benchmark is
monopolistic competition, under which there are no strategic considerations, and there-
fore we obtain the simplification dpkt/dpit = 0,∀k 6= i. This yields the familiar result
drit/dqit = ηit−1

ηit
.

Recall that the revenue elasticity of the flexible input Xj
it is

θR,jit = drit
dqit

θQ,jit

Then, the estimand of the ratio estimator using the revenue elasticity in the numerator is

µRit = θR,jit

αjit

= drit
dqit

θQ,jit

αjit

= drit
dqit

µit

Amiti et al. (2019) show that the firm’s first order condition in the static profit maxi-
mization problem uniquely characterizes the firm’s markup µit as a function of the firm’s
perceived price elasticity of demand σit. That is,

µit = σit
σit − 1

The perceived demand elasticity σit differs under Bertrand and Cournot competition. We
now consider each in turn.

The Bertrand-Nash equilibrium condition is that all competitors of firm i hold their
prices fixed, i.e. dpk = 0,∀k 6= i. Then, the elasticity of revenue with respect to output
simplifies to

drit
dqit

= ηit − 1
ηit

The perceived demand elasticity under Bertrand competition is equal to the own-price
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demand elasticity.

σit = ηit

Then, the Bertrand markup µBertrandit is

µBertrandit = ηit
ηit − 1

=
[
drit
dqit

]−1

It follows that the estimand of the ratio estimator using the revenue elasticity does not
identify the markup:

µR,Bertrandit = drit
dqit

µBertrandit

= drit
dqit

[
drit
dqit

]−1

= 1

The Cournot-Nash equilibrium condition is that competitors hold their quantities fixed,
i.e. dqk = 0,∀k 6= i. Then, the elasticity of revenue with respect to output simplifies to

drit
dqit

=
(

1 +
[
∂qit
∂pit

+ ∂qit
∂zt

(
Sit

1− S̃−i

)]−1
)

where the response of competitiors is summarized in the statistic

S̃−i := −
∑
k 6=i

(
∂qkt
∂pkt

)−1(
∂qkt
∂zt

)
Skt

The perceived demand elasticity under Cournot competition is equal to

σit = −
[
∂qit
∂pit

+ ∂qit
∂zt

(
Sit

1− S̃−i

)]
Then, the Cournot markup µCournotit is

µCournotit = σit
σit − 1

=
(

1 +
[
∂qit
∂pit

+ ∂qit
∂zt

(
Sit

1− S̃−i

)]−1
)−1

=
(
drit
dqit

)−1
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Combining everything together, we again establish that the ratio estimator using the
revenue elasticity does not identify the markup:

µR,Cournotit = drit
dqit

µCournotit

= drit
dqit

(
drit
dqit

)−1

= 1

Appendix A.2. Input adjustment costs
We consider the same firm problem from Section 2, but we now assume that each

input j is associated with a baseline quantity X
j

it and that the firm incurs adjustment
costs when it chooses an input quantity Xj

it 6= X
j

it. The baseline quantity X
j

it might
reflect the input choice from the previous period in a dynamic version of the model. For
simplicity, we assume that these costs are given by the smooth convex function κj

(
Xj
it

)
,

which satisfies κj
(
X
j

it

)
=

dκj
(
X
j

it

)
dXj

it

= 0.
The firm’s cost function is now given by

C (Qit; W t) := min
{Xjit}Jj=1


J∑
j=1

W j
t X

j
it +

J∑
j=1

κ
(
Xj
it

)
W j
t


s.t. F

(
X1
it, . . . , X

J
it

)
≥ Qit,

where we have normalized the adjustment cost functions by the input priceW j
t . Following

the same steps as in the previous section, we obtain the FOC

W j
t X

j
it

PitQit

1 +
dκj

(
Xj
it

)
dXj

it

 = λit
Pit

θQ,jit .

Using αjit to denote the share of input j’s cost in revenue and using the envelope condition,
this implies

αjit

1 +
dκj

(
Xj
it

)
dXj

it

 = ∂C (·)
∂Qit

θQ,jit

Pit
. (A.2)

Hence, the ratio estimator using the revenue elasticity recovers

µR,jit = θR,jit

αjit
= 1 +

dκj
(
Xj
it

)
dXj

it

,
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and the ratio estimator using the output elasticity recovers

µQ,jit = θQ,jit

αjit
= µit

1 +
dκj

(
Xj
it

)
dXj

it

 .
Why might it be more common to estimate µR,jit > 1 than µR,jit < 1 when using firm-level
data? One hypothesis is that adjustment costs are asymmetrical. It is less costly to use
less of an input than previously planned than to use more of an input. If this is the case
then on average we would recover µR,jit > 1. Similarly if firms are growing on average we
would recover µR,jit > 1 on average.

The argument above effectively assumes that observed input costs are W j
t X

j
it rather

than W j
t X

j
it +W j

t κ
j
(
Xj
it

)
. If this is the measure of observed input costs then

αjit =
W j
i X

j
it +W j

t κ
j
(
Xj
it

)
PitQit

and we obtain

W j
t X

j
it +W j

t

dκj(Xjit)
dXj

it

PitQit
= λit
Pit

θQ,jit

µQ,jit = θQ,jit

αjit
= µit

 Xj
it + dκj(Xjit)

dXj
it

Xj
it + κj

(
Xj
it

)


so wedge > 1 whenever κ′ > κ.
Neither of the two cases that are typically considered in the literature lead to a bias.

The flexible input case is κj = 0, in which case the bias disappears. The fixed input case
is one in which Xj

it → X
j

it in which case the bias also disappears. (Note, however that the
fixed input case is not the limit as κj →∞, and so is not a special case of the model with
adjustment cost model. When κj → ∞ in the adjustment cost model, the bias remains
even in the limit, even though Xj

it → X
j

it).

Appendix A.3. Inputs that influence demand
In this section we show that even if output elasticities are available, markup estimates

are biased whenever the variable factor of production is used partly to affect demand in
addition to producing output.

We assume that the firm’s production function is as in Section 2, but that its revenue
is now given by

Rit := P (Qit, Dit)Qit
where Dit is an endogenous demand shifter that the firm can influence through the use of
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inputs according to the function

Dit = D
(
XD,1
it , , . . . , XD,J

it

)
.

We denote the amount of input j used in production as XQ,j
it and the amount used in

influencing demand as XD,j
it . The total quantity of input j used by the firm is Xj

it =
XQ,j
it +XD,j

it .
The profit maximization problem of the firm is now

Πit := max
Qit,Dit

{P (Qit, Dit)Qit − CQ (Qit; W t)− CD (Dit; W t)} (A.3)

where CQ (Qit; W t) is the firm’s cost function for producing output, defined by

CQ (Qit; W t) := min
{XQ,jit }

J

j=1


J∑
j=1

W j
t X

Q,j
it

 (A.4)

s.t. Qit ≤ F
(
XQ,1
it , . . . , XQ,J

it

)
and CD (Dit; W t) is the firm’s cost function for influencing demand, defined by

CD (Dit; W t) := min
{XD,jit }

J

j=1


J∑
j=1

W j
t X

D,j
it

 (A.5)

s.t. D
(
XD,1
it , , . . . , XD,J

it

)
≥ Dit

The optimality conditions from the profit maximization problem (A.3) are

1− 1
ηit

= ∂CQ (·)
∂Qit

1
Pit

(A.6)

ςit = ∂CD (·)
∂Dit

Dit

PitQit
(A.7)

where ςit describes the effect of the demand shifter on the price that a firm can charge for
a given quantity of output. As in the previous section, the optimal markup of price over
marginal production cost is

µit :=
[
∂CQ (·)
∂Qit

1
Pit

]−1
=
(

1− 1
ηit

)−1
.

The FOC for the production cost minimization problem (A.4) yields the relationship

αQ,jit = ∂CQ (·)
∂Qit

1
Pit

θQ,jit (A.8)
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where αQ,jit is the share of revenue paid to input m for use in producing output, and θQ,jit

is the elasticity of output to the use of input j for production. It follows from equation
(A.8) that if one could observe XQ,j

it separately from Xj
it then the ratio estimator would

correctly recover the markup.
However, in practice we observe only the total usage of an input Xj

it = XQ,j
it +XD,j

it ,
rather then the usage in different activities separately. Using the FOC for the cost mini-
mization problem for influencing demand (A.5) yields the relationship

αD,jit = ∂CD (·)
∂Dit

Dit

PitQit
θD,jit (A.9)

where αD,jit is the share of revenue paid to input j for shifting demand and θD,jit is the
elasticity of Dit with respect to XD,j

it . Combining (A.6),(A.7), (A.8) and (A.9) yields an
expression for the total revenue share of input Xj

it

αjit =
(

1− 1
ηit

)
θQ,jit + ςitθ

D,j
it (A.10)

To see what the ratio estimator recovers, note that the optimality condition for allo-
cating an input j between producing goods XQ,j

it and influencing demand XD,j
it implies

that the output elasticity of an input Xj
it is

θQ,jit ρQ,jit + ∂F
∂XD,j

it

XD,j
it

Qit
ψD,jit = θQ,jit ρQ,jit (A.11)

where ψQ,jit is the elasticity of XQ,j
it with respect to Xj

it evaluated at the optimum. ψD,jit

denotes the elasticity of XD,j
it with respect to Xj

it evaluated at the optimum. This means
that in order to correctly recover the output elasticity of an input Xj

it, it is necessary to
separately observe the part of that input that is actually used in producing goods as long
as ψQ,jit 6= 1. The fact that a firm uses inputs partly to influence demand introduces a bias
into the estimate of the output elasticity. It also introduces a bias into the estimate of the
markup. Combining (A.10) and (A.11) reveals that the estimand is given by

µQ,jit = µit

 ψQ,jit

1 + XD,j
it

XQ,j
it

 .
There are however special cases in which ψQ,jit = 1, i.e. the share of Xj

it in production and
in influencing demand does not depend on the level of Xj

it. For example it is sufficient
that the firm faces an isoelastic demand curve and F and D are Cobb-Douglas. If this is
the case, there is no bias the estimate of the output elasticity, but the ratio estimator is
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still biased. 1

µQ,jit = µit

 1

1 + XD,j
it

XQ,j
it

 .
So if the flexible input is only used for production and not to influence demand (XD,j

it = 0)
then the ratio estimator recovers the markup. But if some of the input is used to influence
demand, and this component is not separated out, then the ratio estimand will be biased.
If, over time, the input Xj

it is increasingly being used to influence demand, then the ratio
estimand will fall over time, without any change in the true markup.

Casual observation suggests that at least some part of the workforce currently em-
ployed in the corporate sector devotes its energy to influencing demand rather than to
producing goods. This suggests that using labor as an input for estimating markups will
yield estimates that are hard to interpret. When using the ratio estimator, heterogeneity
across firms and industries in the extent to which they use labor for production ver-
sus marketing and sales-related expenses will thus manifest as heterogeneity in measured
markups.

These observations also help shed light on the difference in the trend in markups that
one obtains from Compustat data on US firms when one uses only COGS versus when
one includes SGA as the flexible input (De Loecker et al., 2020; Traina, 2018). It seems
reasonable to assume that in the COGS bundle, a larger fraction of the inputs is used
to produce output and a smaller fraction is used to influence demand, than in the SGA
bundle. Thus the downward bias in the ratio estimand is likely to be larger when including
SGA in the bundle of flexible inputs, versus when using only COGS. Since the cost share
of SGA in total revenue has been increasing relative to the cost share of COGS in total
revenue, this will manifest as a widening gap between the ratio estimator that uses only
COGS and the ratio estimator that also includes SGA. This is precisely what the literature
has found.

So far in this section we have proceeded as if output were observed. If only revenue
were observed, as in Section 2.1, then the ratio estimator again recovers µR,jit = 1, re-
gardless of whether the input is being used for production or to influence demand. Given
that Compustat data contains only revenue, not output, the aforementioned discussion is
relevant only if one believes that the procedures in those papers do successfully recover
output elasticities, which we believe they do not.

1This result does not require that XD,j
it and XQ,j

it are perfect substitutes, but it does
require that they satisfy Xit = h

(
XQ,j
it , XD,j

it

)
where h is a constant-returns-to-scale

function. Thanks to Agustin Gutierrez for pointing this out.
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Appendix B. Appendix for Section 3

Appendix B.1. Optimal input demand functions
This appendix supplies the derivations of the optimal input demand equation for inter-

mediate inputs under two production technology specifications. Section Appendix B.1.1
provides the derivation for a Cobb-Douglas technology, while Section Appendix B.1.2 pro-
vides that for a non-parametric technology.

Appendix B.1.1. Cobb-Douglas technology
The three-factor Cobb-Douglas production function for gross output Qit with Hicks-

neutral productivity ωit is

Qit = exp (ωit)KβK
it L

βL
it M

βM
it

Since Mit is the single flexible input, the cost minimizing input demand for Mit can be
obtained by rearranging the Cobb-Douglas production function conditional on a given
output quantity Qit

Mit = M∗ (Qit;Kit, Lit, ωit) := exp
(
− 1
βM

ωit

)
Q

1
βM
it K

− βK
βM

it L
− βL
βM

it (B.1)

Then, the minimized total variable cost function is

C
(
Qit;Kit, Lit, P

M
it , ωit

)
:= PMit M

∗ (Qit;Kit, Lit, ωit) (B.2)

where PMit is the unit input price of Mit that firm i takes as given. Taking the demand
system Pit = P (Qit) and the total cost function C

(
Qit;Kit, Lit, P

M
it , ωit

)
as given, firm i

chooses Qit to solve a static profit maximization problem

max
Qit

{
P (Qit)Qit − C

(
Qit;Kit, Lit, P

M
it , ωit

)}
The first order condition in profit maximization equates marginal revenue to marginal cost

P (Qit)
(
ηit − 1
ηit

)
=
∂C
(
Qit;Kit, Lit, P

M
it , ωit

)
∂Qit

(B.3)

where ηit is the absolute value of the price elasticity of demand. Equation (B.3) identifies
the markup µit under monopolistic competition as a function of the demand elasticity.

µit = ηit
ηit − 1

Applying the functional form in equation (B.1) to the FOC in equation (B.3) and solving
for qit := lnQit gives

qit = βM
1− βM

lnβM + βk
1− βM

kit + βl
1− βM

lit + βM
1− βM

(
pit − lnµit − pMit

)
+ 1

1− βM
ωit

(B.4)
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where pMit := lnPMit and pit := lnPit. Using equation (B.4) to substitute for qit in equation
(B.1) produces the optimal input demand equation for mit in terms of the state variables
(kit, lit, ωit), the exogenous input price pMit , and the endogenous optimal output price pit
and markup µit.

mit = lnβM
1− βM

+ βK
1− βM

kit + βL
1− βM

lit + 1
1− βM

(
pit − lnµit − pMit + ωit

)
Appendix B.1.2. Non-parametric technology

The non-parametric three-factor production function for gross output with productiv-
ity ωit is

Qit = F (Kit, Lit,Mit, ωit) (B.5)

The only restriction we impose on the function F (·) is that it is twice continuously differ-
entiable in each of its arguments. As in Section Appendix B.1.1, Mit is the single flexible
input. Inverting equation (B.5) produces the cost-minimizing input demand for Mit.

M∗it = F−1 (Qit;Kit, Lit, ωit) (B.6)

The minimized total variable cost function is thus

C
(
Qit;Kit, Lit, P

M
it , ωit

)
:= PMit F−1 (Qit;Kit, Lit, ωit)

The first order condition in profit maximization is then

P (Qit)
(
ηit − 1
ηit

)
= PMit

∂F−1 (Qit;Kit, Lit, ωit)
∂Qit

(B.7)

Given a functional form for F (·), one can solve equation (B.7) for the optimal output level
Qit.

Qit = Q∗
(
Kit, Lit, P

M
it , ωit, Pit, µit

)
(B.8)

Using equation (B.8) to substitute for Q∗it in equation (B.6) yields the optimal input
demand function for intermediate inputs.

Mit = F−1 (Q∗ (Kit, Lit, P
M
it , ωit, Pit, µit

)
;Kit, Lit, ωit

)
:= M∗

(
Kit, Lit, P

M
it , ωit, Pit, µit

)
In the absence of price data on inputs and outputs, the scalar unobservables in the input
demand function M∗ (·) are

(
PMit , ωit, Pit, µit

)
.

Appendix B.2. Learning about variation in markups from variation in the
cost share only

Without a way to estimate the output elasticity for a flexible input consistently from
typical production data, we cannot use the ratio estimator to learn about the level of
markups. We can however still use insights from the production approach to learn about
variation in markups across firms. This variation can be studied using a regression model
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for the log of the cost share in total revenue for a perfectly flexible input. We sketch this
‘cost share approach’ to studying markups in this appendix.

As discussed in Section 2, the ratio estimator relies on the relationship µit = θQ,j
it

αj
it

for

a flexible input Xj
it. Taking logs and rearranging, we obviously have − lnαjit = − ln θQ,jit +

lnµit. First consider the three factor, Cobb-Douglas case in which intermediate inputs
(Mit) is the perfectly flexible input, as discussed in Section 3. Here lnαMit = (pMit +
mit)− (pit + qit) is the log of the true cost share in revenue for intermediate inputs, and
ln θMit = ln βM is a constant term. Letting ln sMit = (pMit +mit)− (pit + yit) denote the log
of the observed cost share in revenue for firm i in period t, we then have

− ln sMit = − ln βM + lnµit + εit (B.9)

where yit = qit + εit as before.2
Without a consistent estimate of the output elasticity (βM ), it is clear that the mean

of the log of the observed cost shares conflates the log of the output elasticity and the
mean of the log of the markups, and does not separately identify the latter. Nevertheless,
under the maintained assumption that the output elasticity is common to all the firm-year
observations, we can use this relation to study variation in markups. For example, if the
binary dummy DX

it indicates whether or not firm i in period t is an exporter, we can
specify a linear relationship between log markups and export status

lnµit = δ0 + δ1D
X
it + νit (B.10)

as in De Loecker and Warzynski (2012). Substituting (B.10) into (B.9), we have the linear
specification

− ln sMit = (δ0 − ln βM ) + δ1D
X
it + (εit + νit) (B.11)

In the Cobb-Douglas case, we can thus learn about the association between log markups
and export status from a simple regression of the log of the observed cost share in revenue
for a flexible input on a constant and the export status dummy.3

For more general Hicks-neutral gross output production functions, we can write the

2For simplicity, we assume here that this is the only source of measurement error in the
log of the observed cost share in revenue. In the Cobb-Douglas case, we can easily allow
for (multiplicative) measurement error in both the numerator and the denominator of the
cost share for intermediate inputs.

3As in De Loecker and Warzynski (2012), additional controls can be included in this
regression specification, but OLS is still unlikely to estimate the causal effect of exporting
on markups consistently. If the sample used to estimate (B.11) pools data for firms
in several sectors, sector dummies can be used to allow for heterogeneity in the output
elasticity βM between sectors.
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log of the output elasticity ln θMit = f(kit, lit,mit),4 in which case (B.11) becomes

− ln sMit = g(kit, lit,mit) + δ1D
X
it + (εit + νit) (B.12)

where g(kit, lit,mit) = δ0−f(kit, lit,mit). We can then learn about the association between
log markups and export status either by approximating g(kit, lit,mit) using a flexible
functional form, or by estimating (B.12) using semi-parametric methods for partially linear
models (Robinson, 1988).

This cost share approach allows us to learn about some forms of variation across firms
in markups under essentially the same assumptions needed for the production approach,
but without requiring a consistent estimate of the output elasticity. Except in the Cobb-
Douglas case, we could not use this approach to study the association between markups
and measures of firm size (e.g. the log of employment, lit) or measures of factor intensity
(e.g. the log of the capital-labor ratio, kit − lit); we may also have low power to detect
significant association between markups and observed firm characteristics that are strongly
correlated with functions of the production inputs. In principle, this approach could also
be used to study trends in markups over time, as in De Loecker et al. (2020). However, it
should be emphasized that the trend in the log of the cost share in revenue for a flexible
input identifies the trend in the log of the markup only under the maintained assumption
that the output elasticity is stable over time, which cannot be verified without a way of
estimating the output elasticity consistently for different sub-periods.

4For example, in the translog case, we have f(kit, lit,mit) = ln(βM+βKMkit+βLM lit+
βMMmit).
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